If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x+x^2=589
We move all terms to the left:
12x+x^2-(589)=0
a = 1; b = 12; c = -589;
Δ = b2-4ac
Δ = 122-4·1·(-589)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-50}{2*1}=\frac{-62}{2} =-31 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+50}{2*1}=\frac{38}{2} =19 $
| 12x+4=14x-8 | | 6p-(5p+5)=-8-2(1p+12 | | 0.4x+0.1(x+20)=3.5 | | 0=-16t^2+10+6 | | 19/11=n/18 | | 5x^2-4+x=0 | | 0.5x=78.2=287 | | 2x+45=98 | | 45x-7=40x+3,x | | 2x3=4x+1 | | h/7+5=16 | | 9-6x=-x+54 | | 0.15=(x/110.98)/0.225 | | 90=x-3(2x+2) | | -2m=-17 | | 5^3x-2=1/125 | | 5(5x-3)=4(8x+3) | | 0.8x=x-100 | | 2x^2-16x-9)=0 | | 2(x-(-4))=14 | | 5(x-3)+4x=-33 | | 36=x-2(x+4+x-2) | | t^2-(64/121)=0 | | 6=−4x+(−2) | | -3.1x+7-7.4x=1.5x-6x+9 | | 3x+x=159 | | X+3x=159 | | X•3x=159 | | 9x+2(x+1)=24 | | 3•3x=159 | | 11u-3u=40 | | 3(x+1)-2x=x-(2+3(3-x |